Performing custom microRNA microarray experiments.
نویسندگان
چکیده
microRNAs (miRNAs) are a large family of ˜ 22 nucleotides (nt) long RNA molecules that are widely expressed in eukaryotes (1). Complex genomes encode at least hundreds of miRNAs, which primarily inhibit the expression of a vast number of target genes post-transcriptionally (2, 3). miRNAs control a broad range of biological processes (1). In addition, altered miRNA expression has been associated with human diseases such as cancers, and miRNAs may serve as biomarkers for diseases and prognosis (4, 5). It is important, therefore, to understand the expression and functions of miRNAs under many different conditions. Three major approaches have been employed to profile miRNA expression: real-time PCR, microarray, and deep sequencing. The technique of miRNA microarray has the advantage of being high-throughput, generally less expensive, and most of the experimental and analysis steps can be carried out in a molecular biology laboratory at most universities, medical schools and associated hospitals. Here, we describe a method for performing custom miRNA microarray experiments. A miRNA probe set will be printed on glass slides to produce miRNA microarrays. RNA is isolated using a method or reagent that preserves small RNA species, and then labeled with a fluorescence dye. As a control, reference DNA oligonucleotides corresponding to a subset of miRNAs are also labeled with a different fluorescence dye. The reference DNA will serve to demonstrate the quality of the slide and hybridization and will also be used for data normalization. The RNA and DNA are mixed and hybridized to a microarray slide containing probes for most of the miRNAs in the database. After washing, the slide is scanned to obtain images, and intensities of the individual spots quantified. These raw signals will be further processed and analyzed as the expression data of the corresponding miRNAs. Microarray slides can be stripped and regenerated to reduce the cost of microarrays and to enhance the consistency of microarray experiments. The same principles and procedures are applicable to other types of custom microarray experiments.
منابع مشابه
Lossless Microarray Image Compression by Hardware Array Compactor
Microarray technology is a new and powerful tool for concurrent monitoring of large number of genes expressions. Each microarray experiment produces hundreds of images. Each digital image requires a large storage space. Hence, real-time processing of these images and transmission of them necessitates efficient and custom-made lossless compression schemes. In this paper, we offer a new archi...
متن کاملMicroarray Assistant clone organizer and array simulator.
Microarrays are extensively used in molecular biology experiments. While several vendors offer microarrays on a variety of platforms, many researchers prefer to use custom microarrays with a selected list of clones for their experiments. Many research centers have established core facilities for the production of custom microarrays. Microarray production involves a number of steps, including ma...
متن کاملIntra-Platform Repeatability and Inter-Platform Comparability of MicroRNA Microarray Technology
Over the last decade, DNA microarray technology has provided a great contribution to the life sciences. The MicroArray Quality Control (MAQC) project demonstrated the way to analyze the expression microarray. Recently, microarray technology has been utilized to analyze a comprehensive microRNA expression profiling. Currently, several platforms of microRNA microarray chips are commercially avail...
متن کاملFluorescence In Situ Hybridization for MicroRNA Detection in Archived Oral Cancer Tissues
The noncoding RNA designated as microRNA (miRNA) is a large group of small single-stranded regulatory RNA and has generated wide-spread interest in human disease studies. To facilitate delineating the role of microRNAs in cancer pathology, we sought to explore the feasibility of detecting microRNA expression in formalin-fixed paraffin-embedded (FFPE) tissues. Using FFPE materials, we have compa...
متن کاملHuman Cancer Biology Integrated MicroRNA Network Analyses Identify a Poor-Prognosis Subtype of Gastric Cancer Characterized by the miR-200 Family
Purpose: Our aim was to investigate whether microRNAs can predict the clinical outcome of patients with gastric cancer. We used integrated analysis of microRNA and mRNA expression profiles to identify gastric cancer microRNA subtypes and their underlying regulatory scenarios. Experimental Design:MicroRNA-based gastric cancer subtypes were identified by consensus clustering analysis ofmicroRNApr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of visualized experiments : JoVE
دوره 56 شماره
صفحات -
تاریخ انتشار 2011